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Abstract-This paper introduces a consistent theory for boundary element analysis of thick Reissner
plates resting on a one- or two-parameter elastic foundation. Fundamental solutions and kernel
functions have been derived as combinations of a group for plates on a one-parameter foundation
and another group representing the effect of a second foundation parameter. Domain integral
loading terms have been reduced for cases with uniformly- and linearly-distributed loadings and
concentrated shear forces and bending moments. Case studies with different loading and boundary
conditions have been analysed and the boundary element results have confirmed the soundness and
accuracy of the developed theory.

INTRODUCTION

Due to the complexity of the actual behaviour of foundations, many idealized foundation
models have appeared in the literature, the simplest of which is that of Winkler, who
defined the foundation surface stress in terms of one elastic property (k) of the foundation
(Selvadurai, 1979). Considering finite plate with free-edge conditions, the Winkler model
results in a discontinuous deformation at the foundation surface. This problem has led to
the development ofmore accurate foundation models, including the so-called two-parameter
models with which the foundation surface stress is represented in terms of two independent
elastic constants [see e.g. Vlasov and Leont'ev (1966); Selvadurai (1979)].

The boundary element analysis of thin plates resting on two-parameter foundations
has been investigated by some researchers [see e.g. Balas et al. (1984); Puttonen and
Varpasuo (1986); Katsikadelis and Kallivokas (1986)]. A simplified boundary integral
formulation for thick plates on a two-parameter foundation was presented by Jianguo et
al. (1992), who ignored the effect of transverse normal stress and foundation reaction on
internal moments.

This paper introduces a theory for boundary element analysis of thick plates resting on
a one- or two-parameter elastic foundation, and is based upon Reissner's theory (Reissner,
1945). Fundamental solutions and kernel functions are provided as combinations of two
groups, the first of which represents the case for a one-parameter foundation, and the
second provides the additional effect of a second foundation parameter. This leads to an
efficient inclusion of one- and two-parameter cases in one computer program. Domain
integral loading terms have been reduced for cases with uniformly- and linearly-distributed
loadings, and concentrated shear forces and bending moments. Boundary element analysis
of plates with arbitrary shapes and different boundary conditions is discussed.

BASIC GOVERNING EQUATIONS

Consider a plate with a uniform thickness h and a midplane represented by a domain
n in the x-y plane, as shown in Fig. 1. The upper surface of the plate (z = - h/2) is
subjected to a distributed loading with intensity qu = q(x, y), and its lower surface (z = h/2)
is resting on a two-parameter elastic foundation and subjected, therefore, to a stress defined
as follows:
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Fig. I. Plate midplane.

(1)

where k and Gp are the foundation elastic parameters. The Reissner theory for thick plates
(Reissner, 1945) can be employed with the following equation for the transverse normal
stress:

(2)

Hence, the equations of bending moments per unit length can be expressed as follows:

(3)

where Ox and Oy are the average slope angles, which are related to shear forces per unit
length (Q,,, Qy) by means of the following relationship:

(4)

where ~ == x or y, D is plate flexural rigidity, v is Poisson's ratio and ,1,2 = 101hZ
•

Using an approach similar to that employed by EI-Zafrany et al. (1994) an inverse
weighted-residual expression may be obtained as follows:
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where e:, e; and w* are weighting functions, r is the boundary of the domain n which
represents the plate midplane,

and

Notice also that

v (ae: ae;)*-w* -+-
P - - A,2(l-V) ax ay

_* * 2Gpp*
w = w + ,

D,F(l-v)

_ (ae: aet*)M*=D -+v- +G P*
n an at p

(6)

(7)

(8)

0: = !O:+mO;,

a a a a a a
-=!-+m- -=-m-+!-an ax ay' at ax ay'

where (I, m) are the directional cosines of the outward normal to the boundary.
Equation (5) can be reduced to a boundary integral equation if 0:, 0; and w* are

defined as the fundamental solution to the following simultaneous partial differential
equations:

(9)

where e" ey and e= are arbitrary constant parameters, <5(x-xi, y-Yi) is a two-dimensional
Dirac delta function defined with respect to a source point (Xi' Yi).

FUNDAMENTAL SOLUTION PARAMETERS

The previous differential equations (9) can be reduced by means of eqns (8) to the
following operational form :
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where

and
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[
e:] [ex]

~D(1-v)H :: = -b(x-x;,y-y;) :: '

2 2 0
2

H,p = (V -A )b,p+1jJ~
ux, uXp

H '2 a
>3 = -A ;;-­

ux,

rx = 1,2, f3 = 1,2, (X),X2) == (x,y)

l+v 2
IjJ = I-v' ¢ = DA2 (1-v)

2 v
y=A +-¢k.

I-v

(10)

Using a strain function technique similar to that employed by El-Zafrany et al. (1994),
the weighting functions can be written in terms of derivatives of strain functions f~, f~, f~

as follows:

[
e:] [f~l [ex]
~: = H* ;;J == H* :: f*·

Selecting the operational matrix H* such that

H:p = b,p(V2-A2)(e2 V2 -¢k)+ [b,pV2- ax~~xJ[(ljJe2 -el)V
2
+y-ljJ¢k]

H* =~(V2_A2)
,3 ax,

Ht3 = ,1
2

(V2 -..1.2)[(1 +1jJ)V2 _..1.2],
A

then eqn (10) can be reduced to

where

(11)

(12)
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ao = I+G=:)C~;)

1 [(2-V)( k) GpJ2b-- - - +-
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k
C=-.

aoD

Using Fourier-integral transforms, in a way similar to that employed by EI-Zafrany et
al. (1994) it can be shown that

3

f* = L akKO(Akr),
k~1

where

and

1
a ---------

I - 2nao(A~ -AD(A~ -AD
1

a ---------
2 - 2nao(Ar -A~)(A~ -An

1
a ---------

3 - 2nao(.A.r-An(A~-An·

Hence, kernel functions can be defined such that

[
()~] [ex]
~: =u ~

and it can be deduced from eqns (7), (8) and (11) that

(13)

(14)

(15)

(16)

(17)

(18)

and

u
[

0 0

RH*f*+4>Gp 0 0

PI P2
}] (19)
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where

Using eqns (6) and (11), it can also be proved that

which can further be reduced as follows:

Pp =

(21)

It is surprising to discover that the differential operators in eqns (21) are independent
of foundation parameters, and identical to the corresponding ones for the case of thick
plates on a Winkler foundation as given by EI-Zafrany et al. (1994). The effect of the
foundation on loading terms only appear in the function f*.

By rewriting the operational matrix H* as

H* = Ht+H;,

where Htis the operational matrix for the case of Winkler's foundation (El-Zafrany et al.,
1994), then it can be deduced that

2 2 0
2 02

\7 -). (1-v)+-
oxoy

0
ox2

H*= </JGp \72 02
\72 _).2(1

02
(22)v)+- 0

p (I-v) oxoy oy2

~(\72 _),2) 0 V 2 '2 0 0~(\7 -A, )~
).2 AX ).2 oy

Hence, the matrices of the kernel functions U and T can be split as follows:

(23)

(24)

where Uk and T k represent the kernel functions for Winkler's case, as given by El-Zafrany
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et al. (I994) and Up, T p represent the additional effect due to the second foundation
parameter Gp •

Using the previous definitions, it can be shown that

u, ~ RH;f'+~G,[ ~
0

},]0 (25)

PI P2

and

0 0
-

v ot 0
on PI P2

p, ](I-v) 0 (I v) 0
RH*f*+G

0 0 o . (26)Tp=D --- --- 0
2 ot 2 on

p p

°PI OP2 °P3
(I-v) '2 (I-v) 11 2 0 on on on
--A 0 2 . on2

Using eqns (13) and properties of Bessel functions [see e.g. Abramowitz and Stegun
(1965»), it can be shown that

3

Pi = L OkPj(Ak), j = 1,2,3
k=1

3

Up = L akU**(Ad
k=1

3

Tp = L DakT**(Ak)
k=1

and explicit equations for pj(Ak)' U**(Ak) and T**(Ad are listed in the Appendix.

REDUCTION OF DOMAIN INTEGRAL LOADING TERMS

(27)

(28)

(29)

Case ofconcentrated loads and moments
Consider a plate subjected to concentrated shear forces and bending moments. Let a

load vector be acting at a point (Xt, Yt) and defined as

F = r.J+ TJ+ F)£,

where Tx and Tv are bending moments in the x and Y directions, respectively, and F= is a
shear force in the z direction. An equivalent domain loading distribution can be obtained
as follows:

Hence, by using properties of Dirac delta functions (EI-Zafrany, 1993), it can be shown
that
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Case of uniformly- or linearly-distributed loading
The reduction of domain integral loading terms for a case with uniformly-distributed

loading can be carried out in a way similar to that demonstrated by EI-Zafrany et at. (1994).
For a case with q(x,y) being a linear function of (x,y) the following redefinition of the
function f* can be employed:

(31 )

where

and

3

W = L a:.
k=l Ai;

Hence, it can be proved that

where

ff; = -2nwc;),2 :q, {3 = 1,2
UX{I

/3 = 2nwcyq, c; := fIn b(x-x;,y-yJdxdy

and Vj, Sj can be expressed as

3

Vj = L ak Vj(Ak) ,
k=!

3

Sj = L: akSj(}·k),
k=!

where explicit equations for Vjand Sjare as listed in the Appendix.

BOUNDARY INTEGRAL EQUATIONS

Using eqns (9), (16) and (17) with arbitrary values of e." en e= then eqn (5) can be split
into the following boundary integral equations with respect to the source point (xi,yJ :

CiO.(X;,y;)+tr (TIlOn+T210,+T3IW)dr tr (UIIM,,+U2IMnt+U31QIl)dr+Ll (33a)

c;O,(x;,yJ +tr (T12 0Il + T 22 0, + T 32 w) dr tr (U12 MIl + U22 M nt + U32 Qn) dr + L 2 (33b)

C;W(X;,y/)+tr (T130Il + T23 0,+ Tnw)dr = tr (U13 M" + U23 M"t+ Un Q,,)dr+L3· (33c)

The numerical treatment of the previous boundary integral equations can be carried
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out in a way similar to that employed for linear problems [see e.g. EI-Zafrany (1993)]. The
boundary r is discretized into a number of boundary elements, and the boundary par­
ameters (On, 0, ...) are defined within each element in terms of their values at element nodes.
A number of source points equal to the number of boundary nodes is initially selected so
as to formulate algebraic equations in terms of unknown nodal parameters. Such source
points are usually taken at afictitious boundary outside the domain in order to overcome
the problem of singular and divergent integrals resulting from kernel functions which
have singular terms of order log r, l/r, l/r2

• Different types of boundary conditions are
summarized as follows.

Clamped-edge conditions
The boundary conditions for a plate with clamped edges are

(34)

Simply-supported edge conditions
A plate with simply-supported edges will have the following boundary conditions:

(35)

Free-edge conditions
For the case of a plate on a Winkler foundation, the free-edge boundary conditions

are

(36)

which do not consider the deformation of the foundation surface, i.e. they will lead to
discontinuous deformation for the foundation surface at the free edges of the plate.

Since there is no foundation reaction beyond the plate, it can be deduced from eqn
(1), for the case of a plate on a two-parameter foundation, that outside the plate the
deformation of the foundation surface wfis governed by the following differential equation:

A boundary integral equation for the foundation deflection can be deduced with respect to
another source point (x;, y;) as follows:

where

and

, (' ') J (OW!) dr J *oWf dr 0ciwf Xi,Yi -jr --;); wf +jr wf--;); =, (37)

At the plate boundary wf = w, a shear force is generated due to the slope discontinuity
of the foundation surface and is defined as follows (Selvadurai, 1979) :

(38)

Hence, it can be deduced from eqns (38) and (4) that
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(39)

and eqn (37) can, therefore, be modified as follows:

(40)

Equation (40) can numerically be analysed, simultaneously with eqns (33), with the fol­
lowing boundary conditions:

M" =M"t=O

and (J,I' (Jr, 11', Q" are unknown parameters.
This approach provides explicit boundary values for Q", which can be employed to

find the transverse shear stress at the plate edge.

NUMERICAL EXAMPLES

Boundary element computer programs based upon the theory presented in this work,
and employing constant boundary elements, have been developed and tested on a PC.
Validation examples with different loading and boundary conditions have been tested and
their results are summarized here. All the given examples are plates made of a material
with Young's modulus = 2.1 x 1011 N/m2

, and Poisson's ratio = 0.3, and with foundation
parameters: k = 6.48 X 107 N/m3

, Gp = 0 for Winkler cases and Gp = 2.25 X 106 N/m for
Pasternak cases.

Simply-supported rectangular plate under uniformly-distributed loading
This case represents a rectangular plate whose midplane is defined in the x-y plane in

terms of the following sides: x = 0, x = A, y = 0, y = B, with A = 1 m, and B = 0.5 m.
The plate was subjected to a uniformly-distributed loading of intensity q = 6.0 x 106 N/m2

•

Two values ofplate thickness, with hlA = 0.01,0.10, were attempted, and boundary element
results were evaluated at internal nodes on the centreline: y B12. Reference displacement
11'0 and moment M o are defined as follows:

(41)

and the distributions of non-dimensional displacement and moment, 11'/11'0 and MjMo,

respectively, as obtained from boundary element analysis and analytical solutions, are
shown in Figs 2 and 3, which proves that the boundary element results agree very well with
corresponding analytical solutions, for the two cases of thickness.

Clamped circular plate under concentrated loading
This case and the other circular plate examples are based upon a solid disc with outer

radius ro 0.5 m. Two cases of thickness with hid = 0.01, 0.10, where d is the diameter of
the disc, were attempted with clamped-edge conditions, and with a concentrated force
F= = 3.0 X 106 N acting at the plate centre. Reference parameters are defined for this case
as follows:

(42)

Non-dimensional radial distributions of displacement and moment, 11'/11'0 and MJMo,
were plotted from boundary element results and corresponding analytical solutions, as
demonstrated in Figs 4 and 5, respectively, which illustrate also a good agreement between
boundary element results and analytical solutions.
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Fig. 2. Deflection of simply-supported rectangular plate under uniformly-distributed loading.
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Fig. 3. Moment M, of simply-supported rectangular plate under uniformly-distributed loading.
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Fig. 5. Moment M, of clamped circular plate under concentrated loading.

Free-edge circular plate under uniformly-distributed loading
Several values of thickness, ranging from hid = 0.01 to 0.10, were attempted for a

circular plate with free-edge conditions, and subjected to a uniformly-distributed loading
with q = 1.2 X 107 N/m2

• Two types of foundation models were attempted; a Winkler and
a Pasternak foundation model, and the deflection at the outer surface of the plate is plotted
against hid, as shown in Fig. 6. It is clear from this figure that a good agreement between
boundary element results and analytical solutions has been achieved for a wide range of
thickness and the two types of foundation models. It is interesting to notice that the
deflection of the Winkler cases has a constant value consistent with the theoretical estimation
of qlk, and the Pasternak cases have a constant deflection if hid exceeds 0.05. The radial
distributions of the deflection of the plate and foundation surface, over a radial distance
equal to twice the radius of the plate, is illustrated in Fig. 7, and the radial distribution of
the plate internal moment M r is demonstrated in Fig. 8. These figures confirm the excellent
agreement between boundary element results and corresponding analytical solutions. It is
also clear from Fig. 7 that the thicker the plate, the higher will be the discontinuity in the
slope of the foundation surface, leading to a high value of the shear force per unit length
Qn generated at the plate edges. This phenomenon was confirmed by Fig. 9, which illustrates
the generated edge shear force versus plate thickness. It can also be noticed from Fig. 9
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Fig. 6. Edge deflection versus plate thickness for free-edge circular plate under uniformly-distributed
loading.
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Fig. 7. Radial distribution of deflection for free-edge circular plate under uniformly-distributed
loading.

~ BEN (h/d=O .01 )

'1-----'1' AnQl. (h/d=O .01 )

+---+ BEN (h/d=0.10)

*-~
AnQl. (h/d=O .10)

0.50.20.1

- .....- ........
............

....."
"~ ...

"-

"\
...

\.
\
~\o

0.0

80

300

120

0.3 0 ....
r (m)

Fig. 8. Radial distribution of moment M, for free-edge circular plate under uniformly-distributed
loading.
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Fig. 9. Edge shear force versus plate thickness for free-edge circular plate under uniformly­
distributed loading.
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Fig. 10. Edge deflection versus plate thickness for free-edge circular plate under concentrated
loading.

that Qn reaches an asymptotic value with the increase of plate thickness, and such a value
agrees with that obtained from the following analytical expression:

(43)

Free-edge circular plate under concentrated loading
This is similar to the previous case but the plate is subjected to a shear force

F= = 3.0 X 106 N acting at its centre. Boundary element results were plotted together with
corresponding analytical solutions, as shown in Figs 10, 11 and 12, which display obser­
vations similar to those deduced for the corresponding figures of the previous case. It can
also be seen that thick plates under a concentrated loading will have a uniform distribution
of deflection similar to that obtained for a case with a uniformly-distributed loading with
q = F=/nr5. This phenomenon agrees with the concept of rigid plates discussed by VIasov
and Leont'ev (1966). The edge shear force Qn reaches also an asymptotic value in agreement
with that obtained from eqn (43), as can be seen in Fig. 12.
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Fig. II. Radial distribution of deflection for free-edge circular plate under concentrated loading.
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Fig. 12. Edge shear force versus plate thickness for free-edge circular plate under concentrated
loading.

Free-edge rhombic plate under symmetric loading
This case has been suggested to test the behaviour and convergence of boundary

element solutions for cases with singular corner loading. It is based upon a free-edge plate
with a rhombic midplane abed, as shown in Fig. 13, resting on a Pasternak elastic foun­
dation, and having material and foundation properties similar to previous cases.

A rigidcase was tested first, with the rhombic plate subjected to a uniformly-distributed
loading of intensity q = 5.0 X 106 N/m2

. The rigidity was induced by selecting a high value
for the plate thickness (h = 0.5 m), and the boundary element analysis has yielded a uniform
deflection w ~ 0.0404 m. Several other cases, with different values of thickness and subjected
to concentrated shear forces acting at the comes a, b, c and d, each of value

F= qA/4,

where A is the midplane area, were tested. The deflection distribution along the longer
diagonal (the x-axis) was plotted for different cases attempted, as shown in Fig. 14. It is
clear from this figure that with the increase of plate thickness the deflection of the rhombic
plate under corner forces is converging towards the uniform deflection obtained for the
rigid case under equivalent uniformly-distributed loading. Although the corner forces
have generated additional corner singularity, making it numerically impossible to find the
solution at plate corners, the use of non-conforming constant boundary elements has
resulted in an automatic elimination of corner problems in boundary integral equations,
leading to accurate BEM solutions elsewhere.

y

Fig. 13. Midplane of rhombic plate,

SAS 31:21-C
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Fig. 14. Deflection of free-edge rhombic plate resting on a Pasternak foundation.

CONCLUSIONS

It is clear from the previous applications that the boundary element formulations
presented in this work have led to an accurate analysis for plates with different boundary
and loading conditions resting on one- or two-parameter elastic foundations. Boundary
element results of the examples with free-edge conditions were in an excellent agreement
with corresponding analytical solutions, and they also confirm the advantages of two­
parameter foundation models, which lead to practically acceptable results for such cases.
The use of fictitious boundaries to overcome divergent integral problems has performed
well for plate shapes usually employed in foundation problems, including rhombic or skew
plates.
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APPENDIX

Domain loading functions
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n*(A,) =~ Pt(,lk)

TmA,) = 0

TU<A,) = ~ {/{ClKO(Z) +C4Kl(Z)+C5 KI
Z
(Z)]_(C4+cS):: :;p AI(Z)}

TmA,) = -s-4>GpA,,(Al-..t 2)[(4- v)Al-(I-v»),2) ;: K ,(z),

where

Ct: = 1,2, f3 = 1,2, (/ , ,/2) =(I, m), (i~, i~) '" ({,J)

Ii ::= Ii. = I{+mj, [::= n2 = -m{+l!

Z=A,r, r=J(x-xY+(y_y,)2

CS=C'l~+IJ. (I-V)/.2

2K,(z)
AI(z) = Ko(z) +-Z-

K,(z)
RI(z) = Ko(z)+~­

Z

(or)2 (or)2g=-+v-.ox oy

Domain loading boundary kernel functions

- 1 -2 '2 [(2-v)..ti ] orvt(A,) = - -;-(A, -A) -I- -:;- -I -iJ K ,(z)
4 -y ~ n


